Lecture 4 10-11.03.2025

Dielectric properties of crystalline materials
- part | —symmetry and dielectric response

e Dielectric response in solids - basics
e Anisotropy of dielectric response: symmetry and Neumann principles

e Practical aspects of determining dielectric constant in anisotropic
materials

-application-relevant practical examples)

Lecture 4, Crystalline materials: structures and properties — Dielectric response
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Electric response of solids

Conductivity Polarization
E=0 <v,>=0 E:O <vchf >=0;
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Displacements of the charges are much

Displacements of the charges are much
smaller that the interatomic distance

larger than the interatomic distance
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Electric response of solids

Conductivity Polarization
J=- p— i
V P= 1%

Linear response

J.:Z'..E. PZZZUE]

Conductivity tensor Dielectric susceptibility tensor

T Lij
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The dielectric ceramics

- Linear dielectrics
- Nonlinear dielectrics
(e.g. ferroelectrics)

The domain of application:
« Communication technologies

* Information technologies

» Sensors and actuators: industrial processes, transport,
protection and control of the environment, medical....

Medical transducers: Miniature accelerometers:




Applications of dielectric materials

Applications Materials( examples)
Electric insulators porcelain
Substrates for IC Al203, AIN

encapsulation of IC glasses
capacitors BaTiO3
non-volatile Pb(Zr,Ti)O3
memories
Piezoelectric motors Pb(Zr,Ti)O3
and actuators
Ultrasonic trasnducers, Pb(Zr, Ti)O3
resonators and filtres
Sensors of acceleration Si02, Pb(Zr, Ti)O3
and pressure




The dielectric materials (insulators)

These materials posses a relatively small number of free electrons
charge carriers that can contribute to the electrical conductivity.

conduction band

gap ~kT gap >> kT

filled band

conductors - overlaping  intrinsic insulators
or partially filled band ~ semiconductors



The dielectric materials (insulators) subjected
to an electric field

Alll charge carriers react to electric | The free ends of the dipoles
field : if they are bound, the field 1elL@Ee) I & EIEICRInE e

; neutralized by the bound
Induces a dipole, y=qd charges

+ |

Dipoles induced
by the electric field

;

Bound charges




The capacitance and the dielectric constant

Capacitance between two %
. 000 0092 .
conductors in the vacuum : | _
t E

Accumulated charge : Q=Cy V R

A — electrode surface

C - ¢, A Fo E g, — dielectric permittivity of vacuum
o Y4 (electrical constant):
' g, = 8.85*10-12 [Farad/m]
A
Accumulated charge : 0= 80f V =ge0AE
Charge density : D= 1Y wa [C/MZ]
A



The capacitance and the dielectric constant

A

Capacitance between two

_ . _ _ HOEOE +___
conducting plates with a dielectric | R
P —
AN
” - CEECERIEEEE
Addition of charges bound to dipoles

. . . — dipole [El bound charge
mducgd by the polarization of the
material

free charges

e ®
Accumulated charge :

Quot = Qo + Qp I Qut =kCyV C=kC
A A
e A

/ /
k — relative dielectric constant of the material

f \ I C=+rk ¢,

free bound

€ = k g, — absolute permittivity of the material [F/m]
9



Dielectric response

B :;(UE]
or
D =¢FE +P D, = &K, E, &K, = €:0,; + 1;
invacuum  P=0 D =¢,E, i =9;

Internal symmetry —» KZJ — Kji

Dielectric permittivity tensor is

a symmetric second rank tensor
(why symmetric — will be shown later based on thermodynamics)



How to measure and control
macroscopic electric field ?




Macroscopic electric field

—

E=E +Emac

loc

—

E_.(F)= % | Eav

Integration over a small but macroscopic

( containing many atoms)

volume around 7.

@ Macroscopic field is always normal to the metal in contact.

O Further in the course “field” = “macroscopic field”

E .—=>E )



How to measure and control
macroscopic electrical displacemnet?

V., IL M \V\:L‘E‘
n —outer normal to the metal
MEASURED TO CALCULATE DISPLACEMENT
S —electrode area
% =D.n,

O —charge on the metal

This follows from Maxwell equations divD = Pirco
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Neumann principle

Any tensor describing a physical
property of a material should not be
affected when one changes the
reference frame according to the
symmetry elements of the material

Should be invariant with
respect to the symmetry
elements of the material!
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Neumann principle

K. =a,(t)a,(t)K,;
K, =a,(t)a,(t,)K,;
K, =a,(t;)a,()K,

K, =a,(t)a;(t,)K,

tn - symmetry elements of the material

15
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No symmetry elements

No Neumann equations

No restrictions
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6 independent components
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Still no restrictions!



Material symmetry
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Studied property = dielectric response

Property symmetry

atleast |

Property symmetry is

higher

than material symmetry



Symmetry of a tensor or symmetric
tensor: avoiding confusion

Attention: possible terminological confusion !

(i) Symmetric second rank tensor K — K
(permutational symmetry) ! I

(i) The symmetry of K; with respect —
to a change of the reference frame = K alS aﬂK

the symmetry of the
property
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1 symmetry element

-180%-rotation

1 Neumann equation

Kl.,]., = ai,iaijij

-1 0 0
a,= 0 -1 0
0 0 1




Getting Neumann equation

pl’pl’ = PP :>K1,1 =K

C '
X3 X3 !2180° P3=Ps F :
| P,=—p, pp,=pp,=>K,=K,
’ ! X2 "
& A Pi=-p  p p; =— PP = K1’3 =—Ki;

Here some simplification is possible: instead of two vectors p and q, just
use two times the same vector p — works for a symmetric tensor

(i) Transformation (if) Neumann equation

Old frame New frame
/Kn K12 - Kl3\ (Kn K, K13\ /Kll K, - Kl3\
Ki;' - Kzz _ K23 Kzz Kz3 Kzz o K23
\ Ky ) . Kys) Ky )
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3 Neumann equations

2,

N\

P =D
p; iy 2
Pg = Ps

\

X3

X2

X1

(ts)
P = Ds
3y P2=D
P3 = D,



3 Neumann equations

/Kll Klz K13\
K22 K23
\ Kss/

/Kll KIZ O \
K, 0

\ K33/
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3 Neumann equations

(K, 0 0) 3z (K 0 0)
K, 0| = K 0

N Ks3) L K

Type equation here.

| 3 , pp=pp,=>K =K

: %1200 p = p, 1 Py 3P3 11 33
: X3’ Py =p, p, b, =pp =K, =K,
\XZ’ " Dy =D, PP =P, = K =K,

Kzz :K33 :Kn =K

26



44 Neumann equations -

47-3 = 44
Ki’j' = ai'i(tl)aj’j (tl)Kij
Ky = a;(t,)a (1)K, (K 0 0)
Ki’j’ — ai'i(t3)aj']'(t3)Kij sz — Ké‘z] — K 0
................................. \ K

Ky =a,(t,)a; (1)K,

Kronecker delta
IS an invariant tensor

No further restrictions!

27
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(0,)

47 Neumann equations

(K 0 0)
K 0

N K

K.=Ko.=

7 y

Actual symmetry
of the property




5 structures of K-tensor
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Conventional choice of axes

Triclinic Q @ arbitrary
1 1
(c,) (C,)
Monoclinic ~
2 m 2/m
(C,) (C,) (C,,)
Orthorhombic @ @@ The axes are parallel to
mm(ZC_,,) 222(02) mm(ngh) 2'f0|d axes; In mm2 '2 HX3
o |(4) CRICER
3 3 3m 32 3m 3
(C,) (Se) (C,,) (D,) (D,,)
wama (@) DHOERR 44X
4 4 42m 4/m 4mm 422 4/mmm
(C,) (S,) (D,,) c,) (C,) (D,) (D,)
Hexagonal @@@@%Q% 6,6 HXs
6 6 62m 6/m 6mm 622 6/mmm
(C;) (C,,) (D,,) (C,,) (Cg,) (D,) (D)
Cubic @@@ The axes are parallel to
23 m3 Zom | 32 | mim the edges of the cube
(T) (7,) (T,) (0) (0,)




Anisotropy of dielectric response

vacuum Q i

K,=8, D=cf Vi IL

S —electrode area

C:Q Q=5SDn. El.:nl.K
V L

Dielectric response of vacuum is isotropic

0 S¢, B g5

D, =¢E ET s C
ETTn T TR I3

Lecture 4 7



Anisotropy of dielectric response

; iIsotropic dielectric

Q n

S —electrode area

D. =¢ KE

C:% Q:SDini E.:n.

C,. Q — SeKE — &KS Caer —K Dielectric
SV LE L C, constant

32



Anisotropy of dielectric response reminder

anisotropic dielectric X

R e Q _ nl 0 ln | C X 7. K}’l

) R ol B C el — 1, ittt
0 ..... Q diel 14 LE \ 0 J

...................

D.

l

In the principal axes

Reference frame

=N 2 (1) 2 (2) 2 (3)
associated with the material Keﬁf(n)_an +n, K7 +n K

Dielectric response is anisotropic



Anisotropy of dielectric response

Anisotropy of dielectric response is
controlled by the shape of the dependence

_. _ Gy, Effective dielectric
K, (n)=—"%=nKn,
C, constant

n; controls the way the plate is cut from the material !

In the principal axes

K, (n)= K"+ K® +n K

34



Visualization of dielectric anisotropy

K in X ;= | “Representation quadric”

In principle axes of the tensor

X
A

1/ KV

1/~ K"

1/ K@

35



Example: calculation of effective dielectric
constant

Material: rutile (TiO,), tetragonal, 4/mmm K, =173 et K, =8P

X3
0/ o
K :nKn ou K :ﬁkn ' sin@cos @
4 Sk K 4 o ! n;=|sinOsing
0 5“4\\ X2 cos@
ZREN
P
X1
( \

siné?cosgo\ /Kl 0 0) (sin Ocos @
Ky=|sinOsingp ¥ 0 K, 0 ¥ sin@sing| =K cos” H+KLSin2(9
. cos® )\ 0 0 K./ \ cos6 )

K, +K, 179+89

For example, for 6=45°: K5 S =T, =131



Polycrystalline dielectrics with
randomly oriented grains

In the principal axes
K (n)= K" +n K +nKY

Randomly oriented grains:
<K>=13(Ky + Ky + Kys)

The polycrystalline dielectric constant is simply the
numerical average of the principal dielectric constants



3 types of dielectric anisotropy

Tensor Ellipsoid anisotropy
KW =K% =gV Sphere isotropic
Rotational o
. : uniaxial
KV =K% #KY ellipsoid
General biaxial

KV#K? 2K #K"  ellipsoid (general)

38



Symmetry of the dielectric response (3 types)
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Link:
material symmetry - tensor structure in
conventional axes

39 groups of
macroscopic
symmetry

5 structures of
K-tensor

Results of application of Neumann principle

40



Link:
material symmetry —property symmetry

39 groups of
macroscopic

symmetry

J isotropic

5 structures of

K-tensor 3 'uniaxial
J

3 types of m

property symmetry

Result of anisotropy of dielectric response



Symmetry of dielectric response in terms
of representation quadrics

In principal axes of the tensor

X
A

/KD

1/ KV

1/« K@

Symmetry of Symmetry of Symmetry of

ellipsoid - tensor property

42



Obvious additional symmetry elements
of the property

material

=) | KO ]f) —) ellipsoid
K33
2

Any ellipsoid is invariant with respect to inversion!

2/m



Hidden symmetry elements of property

material K 0 Ky ; ) )
K, O Ky X7+ K X5+ 2K, X, X, + K, X, =1
K33
2 K, 0 0
' 2 ' 2 2
Ky 0 Ky X; + KXy + Ky X, =1
K,
5 LN
\ e
\
X -
— " AL \ v tan ¢ = s
~— 1 i 4 K, —K;
’ \
// \




Hidden symmetry elements of property

High symmetry Low symmetry
(orthorhombic or higher)

X3
X2
— |
< |
Symmetry of ellipsoid _ _
Conventional axes of the T.he orientations of the
material hidden symmetry elements

depend on the property

For instance, for dielectric

response and conductivity

the orientation of principle
N . axes is not same



Low symmetry: orientation of hidden symmetry
elements is different for different properties

Two different properties:

material K, 0 K;
K, O
K33
ay, 0 a3
2/m Ay 0
2 104 K13
33 tan @, = ,
11 _Kn
tan g = ik ,
a, —ay,

Diagonal form is not available for
two properties at once ! 0 %@,



Comparison with mmm materials
Symmetry

High symmetry (orthorhombic or higher): diagonal
form is available for two properties at once !

All properties controlled
by such type of tensor

material K, 0 0
[ K22 O }
K33

a, 0 0
mmm mmm



Dielectric response:
examples of materials

K

x10°

20000 |
\_'
K, 0 0
K, 0
3

30—

.4/ mmm | m3m
A\ :
:1'\,",‘ 1 :
. SrTiO;
!
6680200

TEMPERATURE (%K)

N o O



Dielectric response:

DIELECTRIC CONSTANT

K\’)O]

x10°

examples of materials-perovskites

- 1
- I -
1
.4/ mmm | m3m
‘il 1
:q]blli 1
'xll
1%
P"rq’ll' |
20 ‘IL‘L i -
| :
|l 1 u
i : SrT|03
:
1
1
1
1
1
10 |
1
i 1
1
1
1
1
1
1
1
1
1
! ;
O | | |1 ! x'._'f’. o1
0 50 100 150 200

TEMPERATURE (%K)



Definition of polarization: modern theory

Journal of Solid State Chemistry I -

Volume 195, November 2012, Pages 2-10

ELSEVIER

A beginner's guide to the modern theory of
polarization
Nicola A Spaldin NttPs://doi.org/10.1016/j.issc.2012.05.010

(optional reading)

Youtube resources: lecture of Prof. Nicola Spaldin

But whot f instead of defining the unit
cell bo conkain ona Molewﬁe, woleac\'r\:‘- .

d
So tkgpo(.wﬁzih‘o{\?; dizf\é\:namtdr
=L (¢ 10-1)
This o\IPFarst*om our pmmoms value bﬂ"’y l

https://www.youtube.com/watch?v=UtLKjTPEKTk

 Accurate definition of
polarization is not that
simple

» For practical applications
a change of polarization vs
external stimuli (e.g.
changing electric field) is
important

50


https://doi.org/10.1016/j.jssc.2012.05.010

Essential — application Neumann
principle to dielectric response, part |

1. The symmetry of a material can be translated into that
of a property by the Neumann principle.

2. The symmetry of a property is controlled by the
internal symmetry of the tensor and the symmetry of

the material. The symmetry of a property = the
symmetry of a tensor describing the property.

3. The symmetry of property is not lower (can be higher!)
than that of the material.

4. Symmetry-based analysis performed here for dielectric
response can be extended to other phenomena
described by symmetric second-rank tensors



